Low-Intensity Laser Irradiation Stimulates Bone Nodule Formation Via Insulin-Like Growth Factor-I Expression in Rat Calvarial Cells

Noriyoshi Shimizu, DDS, PhD,1,2* Koito Mayaharu, DDS, PhD,1 Takeshi Kiyosaki, DDS,1 Akifumi Yamaguchi, DDS,1 Yasuhiro Ozawa, DDS, PhD,3 and Yoshimitsu Abiko, DDS, PhD4
1Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda, Surugadai, Chiyoda-Ku, Tokyo101-8310, Japan
2Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda, Surugadai, Chiyoda-Ku, Tokyo101-8310, Japan
3Department of Orthodontics, Nihon University School of Dentistry at Matsudo, 870-1, Sakaecho-Nishi 2, Matsudo, Chiba 271-0092, Japan
4Department of Biochemistry, Nihon University School of Dentistry at Matsudo, 870-1, Sakaecho-Nishi 2, Matsudo, Chiba 271-0092, Japan

Background and Objective: We previously reported that low-intensity laser irradiation stimulated bone nodule formation through enhanced cellular proliferation and differentiation. However, the mechanisms of irradiation are unclear. Thus, we attempted to determine the responsibility of insulin-like growth factor (IGF)-I for the action observed.

Study Design/Materials and Methods: Osteoblast-like cells were isolated from fetal rat calvariae and cultured with recombinant (r) IGF-I, IGF-I-antibody (Ab), and/or the cells were irradiated once (8.75 J/cm²) with a low-intensity Ga-Al-As laser (830 nm). The number and area of bone nodules formed in the culture were analyzed, and IGF-I expression was also examined.

Results: Treatment with rIGF-I significantly stimulated the number and area of bone nodules. This stimulatory effect was quite similar to those by laser irradiation, and this stimulation was abrogated dose-dependently by treatment with IGF-I-Ab. Moreover, laser irradiation significantly increased IGF-I protein and gene expression.

Key words: low-intensity laser; bone formation; IGF-I; bone nodule; calvarial osteoblast

INTRODUCTION

The acceleration of bone regeneration by low-intensity laser treatment has been the focus of contemporary research [1,2,3,4,5] as it may hold great potential benefit for clinical therapy in orthopedics and dentistry. However, since the stimulatory mechanisms involved with the action of laser irradiation on bone are not fully elucidated, laser therapy is often carried out haphazardly in clinical use and may not always be effectively applied. Thus, it is necessary to elucidate the mechanisms involved. It has been reported that the particular properties of laser irradiation do not act directly on osteosynthesis, but rather create a series of environmental conditions that accelerate the healing of bones [4]. However, in recent investigations using an in vitro bone nodule formation assay system with fetal rat calvarial cell [6,7] we found that low-intensity laser irradiation significantly stimulated bone formation via acceleration of cellular proliferation and differentiation, suggesting direct stimulatory effects on bone formation by laser irradiation. Osteoblast-like cells derived from fetal rat calvariae are known to produce osteoblast differentiation factors [8,9,10], and these factors may be presumed to act as autocrine or paracrine stimulators with these cells. Among them, insulin-like growth factor (IGF)-I is known to be a potent stimulator of bone formation in vivo [11,12,13] and in vitro [14,15,16], therefore, it is likely that laser treatment stimulates bone formation via IGF-I expression. To determine the mechanisms responsible for the action of laser irradiation, we investigated the effects on bone formation and IGF-I expression using osteoblast-like cells derived from rat fetal calvariae.

MATERIALS AND METHODS

Fetal Rat Calvarial Cell Isolation and Culture Procedures

The procedures used for osteogenic cell isolation and culture have been described by Bellovs et al. [17,18]. Briefly, calvariae were dissected aseptically from 21-day-old fetuses of timed pregnant Wistar rats and adherent soft

© 2007 Wiley-Liss, Inc.
connective tissues were gently removed. The calvariae were minced and sequentially digested in a collagenase mixture. Five samples were obtained after digestion times of 10, 20, 30, 50, and 70 minutes, respectively. Cells retrieved from the last four steps of the five-step digestion sequence were pooled and plated in T-75 tissue culture flasks (Falcon 3041, Franklin, NJ) in z-minimal essential medium (xMEM; Gibco, Grand Island, NY) containing 15% fetal calf serum and antibiotics comprising 100 μg/ml penicillin G (Sigma Chemical Co., St. Louis, MO), 50 μg/ml gentamicin sulfate (Sigma), and 0.3 μg/ml fungisone (Flow Laboratories, McLean, VA), supplemented with 50 μg/ml ascorbic acid (Wako, Osaka, Japan) and 10 mM Na β-glycerol-phosphate (β-GP, Wako). Cultures were maintained in a humidified atmosphere consisting of 95% air/5% CO₂ at 37°C. After 24 hours of incubation, attached cells were washed with PBS to remove the non-viable cells and debris, trypsinized with 0.05% trypsin (Gibco) in phosphate-buffered saline (PBS), and counted using a Coulter Counter (Model ZM, Electronics Ltd., Northwell drive, Luton, Beds, England). For quantification of bone nodules, the cells were resuspended in the culture medium described above and then plated in 35-mm tissue culture dishes (Falcon) at a density of 5 × 10⁵ cells/dish (5.2 × 10⁴ cells/cm²). The cells were also plated in 24-well plates (Corning Inc., Corning, NY) for the IGF-I assay and 4-well Lab-Tek chamber slides (Nunc, Inc., Naperville, IL) for immunohistochemistry at the same density as described above. Medium was changed every 3 days and cultures were maintained for up to 24 days.

Procedure of Laser Irradiation

A low-intensity Ga-Al-As diode laser apparatus (model Panasys-1000, Matsushita, Inc., Osaka, Japan) with a continuous wavelength of 830 nm (maximum power output of 500 mW) was used in this study. The laser beam was delivered by an optical fiber 0.6-mm in diameter that was focused at the tip of the fiber by a concave lens allowing for uniform irradiation in a 100 mm in diameter circular area at the cell-layer level. The power density of the laser beam was monitored with a laser power meter, and irradiation was performed at 550 mm above the cell layer. In this manner, 3 of the 35-mm dishes, 16 wells in a square in a 24-well plate, or 4 well Lab-Tek chamber slides were irradiated simultaneously on a clean bench. The total energy corresponding to a 10-minute exposure was 3.82 J/cm², as this dose has been reported to stimulate a number of bone nodules from rat calvarial cells using an experimental model similar to the one used in the present study [7]. Laser irradiation was performed only once, 3 days after subculture at the subconfluent stage (Day 3) and just after the medium had been changed. Control dishes, plates, and chamber slides were placed on a clean bench for 10 minutes without any irradiation on Day 3.

Treatment with rIGF-I, IGF-I-Ab, and Laser Irradiation

To determine whether the stimulatory effect of bone nodule formation by laser irradiation is mediated by IGF-I, several concentrations of recombinant (r)-rat IGF-I (0.1, 1, 10, 100 nM; GroPep Pty. Ltd., Adelaide, Australia) and anti-human IGF-I-antibody (Ab) (0.01, 0.1, 1, 10 μg/ml) (Upstate Biotechnology Inc., Lake Placid, NY) were added to separate cultures for 6 days (Days 3–9) after the cells had reached the subconfluent stage. We also investigated whether the neutralization of bone nodule formation was dependent on the specific reaction of IGF-I-Ab protein or not, IgG (10 μg/ml) (Upstate Biotechnology) protein was added to the culture. Laser irradiation was performed once on Day 3 immediately after the medium was replaced with new medium with or without IGF-I-Ab. The concentration of rIGF-I was determined by the method of previous studies, in which rIGF-I stimulated bone and bone matrix formation [14,15,16].

After the calvarial cell cultures were maintained for 24 days in vitro, the contents of each well were fixed for 10 minutes in 4% paraformaldehyde in PBS and stained using the von Kossa technique. The number of bone nodules present in each 35-mm culture dish was counted at 40× magnification using a dissecting microscope (Olympus, Tokyo, Japan) by placing the culture dish on a transparent acetate grid that was ruled in 2 x 3 mm rectangles, as described previously [6].

The areas of bone nodule formation were also evaluated according to the method of our previous study [6]. Briefly, bone nodules were photographed at 100× magnification using a dissecting microscope (Olympus, Tokyo, Japan). The outline of each bone nodule was then traced on the photographs and the traces were measured using image analysis software (Ultimage Ver. 2.0, Graftek France, Voisins-Le-Bretonneux, France). Total bone nodule area was determined by adding each area in a dish and the mean area was calculated by dividing the total area by the number of nodules in each dish. Mean ± standard deviation (SD) results of both total area and mean area were calculated from four replicate measurements.

Assay for IGF-I and PGE₂ Production

The amount of IGF-I released into culture medium was measured on Days 3, 6, 9, 12, 15, and 18, in duplicate, by a radioimmunoassay (RIA) using a commercially available kit with a [125I]IGF-I assay system, employing anti-human IGF-I-specific antibody (Amersham, Arlington Heights, IL). This system was previously used for measuring rat IGF-I expression [19]. The test sample in a tube was mixed with antiserum and incubated for 4 hours at room temperature. [125I]IGF-I was then placed into the tube with a pipette and the mixture was incubated for 24 hours at 4°C. After incubation for 10 minutes with the secondary antibody, the antibody-bound fraction was separated by magnetic separation. The radioactivity present in each tube was then determined by using in a gamma scintillation counter (Aloka, Tokyo, Japan).

The amount of PGE₂ in culture medium was measured similarly on Days 3, 6, and 9 with a commercially available kit utilizing [125I],PGE₂ as the tracer (Amersham, Arlington Heights, IL). The cross-reactivity of the antibody at 50% B/Bo with PG was previously determined as PGE₂ = 100%;
PGE₁ = 5%; and 8-iso-PGE₂ = 62%. Cross reactivity with PGE₂, PGE₃, 6-keto-PGE₂, 6-keto-PGF₁α, TxB₂, and arachidonic acid was less than 0.001%. (Inter- and intra-assay coefficients of variation for the PGE₂ assay used in these experiments were 10.0 and 6.8, respectively).

Cells growing in 24-well plates were collected by digestion with a 1:1 mixture of trypsin (0.05%) and collagenase (0.1%) solutions for up to 25 minutes to release the cells from the collageneous matrix. The number of cells in each well was determined using a Coulter Counter.

Immunocytochemistry for IGF-I

Calvarial cells cultured on 4-well Lab-Tek chamber slides (Nunc, Inc.) with or without laser treatment were fixed with 4% paraformaldehyde in PBS on Days 5 and 8. After blocking any non-specific reactions, the cells were incubated with anti-human mouse IGF-I-Ab (10 μg/ml, Upstate Biotechnology Inc., Lake Placid, NY) overnight, followed by washing with PBS. After incubations with the secondary-Ab (rhodamine conjugated goat anti-mouse IgG, ×100) for 90 minutes, the expression of IGF-I was observed using a confocal laser scanning microscope (model: TCS-4D, Leica, Germany). As a negative control, cells were also incubated with normal goat serum instead of the primary antibody.

RNA Preparation and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Analysis

Total RNA in the cells with or without laser irradiation treatment was isolated by acid guanidinium thiocyanate-phenol–chloroform extraction [20] on Days 4, 6, and 9. cDNA synthesis and amplification by RT-PCR were carried out using a GeneAmp RNA kit (Perkin Elmer, NJ). Two micrograms of total RNA were incubated in the reaction mixture for reverse transcription (10 mM Tris-HCl, pH 8.3, 50 mM KCl, 5 mM MgCl₂, 1 mM dNTPs, 2.5 mM oligo d(T)16 and 2.5 random hexamer, 1 unit/ml RNase inhibitor, and 2.5 unit/ml MuLV reverse transcriptase in a total volume of 20 μl) for 15 minutes at 42°C, and then the reaction was stopped by heating at 95°C for 5 minutes. The cDNA was then amplified using a PCR method, with 0.2 mM of each up and down primer used for the reaction. Further, the concentration of magnesium chloride was changed to 2 mM for PCR. The PCR primers for amplification were designed referring to the sequences of cDNA that have been reported for IGF-I and GAPDH [21,22]. The following primer sequences with the size of the amplified fragment in brackets were used: IGF-I [582bp], 5'-TGG TGG ACG CTC TTC AGT-3' and 5'-CAG TGT TGG CCA GGT TGC-3', and GAPDH [318bp] 5'-ATC ACC ATC TTC CAG GAG-3' and 5'-CTC ATG ACC ACA GTC CUA T-3'. To evaluate saturated or incomplete PCR reactions, the gene fragments were amplified simultaneously every 3 cycles from the 18th to 24th cycle at 94°C for 1 minute, 55°C for 2 minutes and 72°C for 2 minutes. PCR fragments amplified by different cycles were electrophoresed on a 1.5% agarose gel, and subsequently stained with ethidium bromide. When the PCR products were sequenced to check the validity of our PCR primers, each product had the same DNA sequence as reported previously (data not shown).

STATISTICAL METHODS

Values were calculated as the mean ± SD. Data were subjected to one-way analysis of variance (ANOVA) as indicated in the results. Student’s-t test was used for analysis of the difference in some groups, and Tukey-Kramer’s test was used for analysis of the difference among the various group tested.

RESULTS

Effect of IGF-I, IGF-I-Ab, and Laser Irradiation on Bone Nodule Formation

The kinetics of stimulation or inhibition were investigated by treating cultures with IGF-I, IGF-I-Ab, laser irradiation, and irradiation plus IGF-I-Ab. Well-delineated three-dimensional nodular mineralized tissue structures were formed by rat calvarial cells in all four groups. However, the number and size of bone nodules formed were found to be higher in the rIGF-I treatment and laser irradiation groups as compared to the control and IGF-I-Ab treatment groups (Fig. 1). When the number of bone nodules present in 4 replicate 35-mm dishes was quantitated (Fig. 2), significant stimulation was caused by rIGF-I treatment for 6 days (maximum 1.4-fold, P<0.001) as compared to the control, in a dose-dependent manner (P<0.001, by one-way ANOVA). In contrast, the number of nodules was significantly decreased by treatment with IGF-I-Ab (0.85-fold, P<0.001) in a dose-dependent manner (P<0.001, by one-way ANOVA). With laser irradiation, the number of nodules markedly increased (1.4-fold, P<0.001) and was nearly equal to the highest concentration of rIGF-I treatment (100 nM). However, this stimulatory effect was significantly diminished by IGF-I-Ab treatment in a dose-dependent manner (P<0.001, by one-way ANOVA), and it was completely removed by treatment with 1 μg/ml IGF-I-Ab. IgG treatment as the control of IGF-I-Ab protein did not affect the number of bone nodules.

When total bone nodule areas were compared (Fig. 3A), they were found to be significantly larger in the rIGF-I treatment and laser irradiation groups (2.1-, 2.0-fold, P<0.001) as compared to the control, however, the increased area in the laser irradiation group was significantly diminished by IGF-I-Ab treatment (0.49-fold, P<0.001). The mean area of bone nodules in each group was similar to the total area (Fig. 3B). It was found to be significantly larger in the rIGF-I treatment and laser irradiation groups (1.5-, 1.4-fold, P<0.001) as compared to the control, however, the increased mean area in the laser irradiation group was significantly diminished by IGF-I-Ab treatment (0.49-fold, P<0.001), but IgG or IGF-I-Ab treatment did not affect the area of bone nodules.

Effect of Laser Irradiation on IGF-I and PGE₂ Production

The time course of the effects of laser irradiation on IGF-I and PGE₂ production by calvarial cells is shown in Figure 4. IGF-I was constitutively expressed in the conditioned medium. Laser
Fig. 1. Bone nodule formation in each treatment group. Three-dimensional mineralized tissue nodular structures formed on Day 24 in fetal rat calvarial cell cultures. rIGF-1 (100 nM) (B) and laser irradiation (D) treatments induced a higher quantity and larger nodule formation as compared to the control (A). In contrast, IGF-I-Ab treatment (10 µg/ml) (C) and laser irradiation plus IGF-I-Ab treatment (10 µg/ml) (E) induced less nodule formation as compared to the rIGF-I treatment and laser irradiation groups.

Irradiation significantly stimulated IGF-I production on Days 6 (1.5-fold, \(P<0.01 \)) and 9 (1.3-fold, \(P<0.05 \)) as compared to the corresponding controls (A). When IGF-I production was expressed as ng per 10^6 cells (B), laser irradiation sustained IGF-I production, which decreased spontaneously in the control, and a significant difference was observed on Day 6 (1.4-fold, \(P<0.01 \)).

PGF_2α was also constitutively expressed in the conditioned medium of the calvarial cell cultures on Day 5 in the control and laser groups (Fig. 5). However, it rapidly decreased on Days 6 and 8, and there was no difference in production between the control and laser groups.

Immunocytochemistry for IGF-I

The results of immunocytochemical staining for IGF-I in rat calvarial cells are shown in Figure 6. In both the control and irradiation groups, IGF-I was expressed only in the center of the cell masses on Day 5, and laser irradiation seemed to increase the number of cell masses expressing IGF-I as compared to the control. No IGF-I fluorescence was observed in the negative control. The marked expression of IGF-I in the center of the cell masses was slightly decreased on Day 5 (data not shown).

Effect of Laser Irradiation on IGF-I Gene Expression

To elucidate the molecular mechanisms of stimulated bone formation by laser irradiation, IGF-I mRNA expression in both irradiated and non-irradiated cells was analyzed by RT-PCR (Fig. 7). Each band of 2 gene fragments was amplified simultaneously every 5 cycles and constantly increased as the number of cycles increased.

Fig. 2. Effects of rIGF-1, IGF-I-Ab, and laser irradiation on the number of bone nodules on Day 24. The number of bone nodules formed in each dish was significantly increased by rIGF-I treatment (0.1–100 nM), and significantly decreased by IGF-I-Ab treatment (0.01–10 µg/ml) as compared to the control. Laser irradiation (5.82 J/cm²) significantly increased the number of nodules to equal the maximum dose (100 nM) of IGF-I treatment. The increase in nodule formation was significantly diminished by IGF-I-Ab treatment (0.01–10 µg/ml). IgG (10 µg/ml) did not affect bone nodule formation. Values are mean ± SD for 4 cultures. Significantly different from control: *\(P<0.01 \), **\(P<0.001 \). Significantly different from laser irradiation group: ††‡†‡†‡†. Similar results were obtained from two different experiments.
Fig. 3. Effects of rIGF-1, IGF-1-Ab, and laser irradiation on the area of bone nodules. The total bone nodule areas were significantly larger in the rIGF-1 treatment (100 nM) and laser irradiation groups as compared to the control, however, the area in the laser treatment group was significantly reduced to the level of the control after IGF-1-Ab treatment (10 µg/ml) (A). The size of each bone nodule (mean bone nodule area) showed similar results to those of the total bone nodule area (B). Values are mean ± SD for four cultures. Significantly different from control: **p<0.001. Significantly different from laser irradiation group: ††p<0.001.

Fig. 4. Effect of laser irradiation on IGF-1 production in rat calvarial cells. IGF-1 production was markedly stimulated soon after laser irradiation (A). When the production was expressed as per 10^6 cells (B), laser irradiation sustained IGF-1 production until Day 6, whereas it was significantly decreased in the control. Values are mean ± SD for 4 cultures. Significantly different from corresponding control: *p<0.05, **p<0.01. Similar results were obtained from two different experiments.
Fig. 5. Effect of laser irradiation on PGE₂ production in rat calvarial cells. PGE₂ production was found constitutively expressed in the conditioned medium of calvarial cell cultures that were not affected by laser irradiation. Values are mean ± SD for 4 cultures. Similar results were obtained from two different experiments.

Thus, we considered that the PCR reactions were neither saturated nor incomplete. Bands for IGF-I mRNA in both irradiated and non-irradiated cells were visible on the 18th cycle, while IGF-I gene expression in the irradiated cells was more intense than that in the control cells on Day 4. The intensity of gene expression in both irradiated and control cells was decreased on Day 6, though with a slight difference, and there was no difference on Day 0.

DISCUSSION

The stimulatory effects of low-intensity laser irradiation on bone formation have been reported from based on non-quantitative observations [3,4]. Recently, some studies [23,24] have used biochemical and quantitative histomorphometrical methods in vivo rat osteotomy experiments and found that low-intensity laser irradiation caused a twofold enhancement of bone repair with increases in ALP activity and calcium accumulation. We have also noted [25] that low-intensity laser irradiation to the mid-palatal suture during rapid maxillary expansion in rats produced a 1.4-fold enhancement of bone regeneration in the area of the suture. However, the regulatory mechanism involved with low-intensity laser irradiation toward bone is not yet understood clearly. In in vitro experiments, Kosakari et al. [26] reported promotion of bone formation by laser irradiation, stimulation of DNA and protein synthesis, and elevation of ALP activity in UMR 106 osteoblast-like cells. We also reported stimulatory effects of bone formation by laser irradiation with increase in cellular proliferation, ALP activity, osteocalcin expression, and Ca accumulation using a quantitative bone nodule formation assay [6,7]. These results suggest that laser irradiation may stimulate both proliferation and differentiation of osteoblastic cells in vivo and in vitro, resulting in an enhancement of bone formation. Further, these phenomena appear to be the direct effects of laser irradiation to the cells. However, the question remains regarding why cellular proliferation and differentiation are stimulated by laser irradiation.

It is reported that local regulation of bone cell function has been shown to be regulated by cytokines, growth factors, and prostaglandins [27]. Among these, prostaglandin E₂ [28,29], and IGF [13,30] have been demonstrated to be potent stimulators of bone formation and produced by cells with an osteoblast lineage. Therefore, it is likely that the stimulatory mechanism of laser irradiation toward bone formation may be mediated by these factors, as they have been shown to have proliferation and differentiation-inducing properties and are produced from cells of osteoblast lineage by laser irradiation.
IGF-I belongs to a family of growth factors, however, its effect on bone formation is known to be different from that of other factors, for example, epidermal growth factor and fibroblast growth factor, which stimulate cell replication but inhibit differentiated function in skeletal tissue [31]. In contrast, IGF-I had a stimulatory effect on both replication and differentiation of bone cells in cultured rat calvaria [14,15,32] and osteoblast-like cells obtained from rat calvaria by enzymatic digestion [33], which had the same origin as the cells in the present study, as well as in MC3T3-E1 cells [34]. The stimulatory effects by IGF-I described in these studies are similar to those of our previous studies [6,7], which showed that a low-intensity laser irradiation significantly increased the number of bone nodules, cellular proliferation, ALP activity, collagen secretion, and calcification employing rat calvarial cells. Although the stimulatory effect of laser irradiation on bone nodule formation was comparable to that by the highest concentration of rIGF-I (100 nM, 770 ng/ml), laser-induced endogenous IGF-I production detected by radioimmunoassay on Day 3 was about 255 ng/ml. This difference may be explained by the finding that some of the endogenous IGF-I produced from laser stimulated cells was spontaneously degraded during the 3 days before assay. Further, not only IGF-I but other factors also stimulated by laser irradiation may have acted as mediators for bone nodule formation. Prostaglandin E is also known to be a potent stimulator of bone formation and this is constitutively produced by cultured osteoblasts[35] and it stimulates IGF expression [36]. Because PGE₄ production was not affected by laser irradiation, it may not have been a mediator of the stimulated bone nodule formation by laser irradiation seen in the present experimental condition. However, it is likely that except PGE₄, there are some mediators related to bone formation stimulated by low-intensity laser irradiation in vivo and/or in vitro and they may form the signal transduction pathways of bone formation. The study to find out these pathways is now in progress.

Low-intensity laser irradiation is very similar to low-intensity pulsed ultrasound, in regards to the physical stress on the cells. Recently, low-intensity pulsed ultrasound has been reported to have stimulatory effects on bone-forming response in vivo [37,38] and in vitro [39-41] studies. Some in vitro results indicate that the stimulatory effects were mediated by increases in PGE₂ and/or COX-2 [39,41] or IGF-1 [40] expressions. Although IGF-I and not PGE₂ was a mediator of the laser stimulated bone formation in the present experiment, an understanding of these differences between the effects of laser and pulsed ultrasound may be important to elucidate the action mechanisms of physical stress on cell.

In addition, osteoblast-like cells, like several other cell types known to secrete IGFs, produce IGF-binding proteins [42-44], which modulate the biological effects of IGFs on skeletal cells. These IGF binding proteins may also have important roles in stimulating bone nodule formation by laser irradiation. It was recently reported that p44/p42MAP kinase among MAP kinase super family plays a role in the IGF-1 stimulated ALP activity in MC3T3-E1
cells [45]. Considering our previous study [6,46] that laser
irradiation stimulated ALP activity in calvarial cells, these
kinase may also mediate laser stimulated bone nodule
formation.

In conclusion, our results provide the first known
evidence that low-intensity laser irradiation stimulates
IGF-I protein and gene expression in rat calvarial osteo-
blasts. Since IGF-I is known to be a potent stimulator of
bone formation, the stimulatory effect of bone nodule
formation by low-intensity laser irradiation is at least
partly mediated by IGF-I expression.

ACKNOWLEDGMENTS

The authors wish to express their gratefulness to
Mr. Akira Kaneda, senior engineer of Matsushita Indus-
trial Equipment Company Limited, for providing the laser
therapy apparatus. This research was supported in part
by a Grant-in-Aid for Scientific Research from the Ministry
of Education, Science, Sport and Culture, grants from
the Ministry of Education, Culture, Sports, Science, and
Technology to promote multi-disciplinary research pro-
jects, Uemura Fund, Satot Fund, and Grant from Dental
Research Center, Nihon University School of Dentistry.

REFERENCES

1. Chen JW, Zhou YC. Effect of low level carbon dioxide laser
radiation on biochemical metabolism of rabbit mandibular

2. Nakasawa A, Kato K, Negishi A. Bone regeneration effect of
low level lasers including argon laser. Laser Ther 1991;3:59–
62.

3. Teng XM, Chai B. Effect of UVA laser irradiation on experimental
fracture healing: A transmission electron microscopic study.

4. Trelles MA, Mayayo E. Bone fracture consolidates faster with

5. Merli LA, Santos MT, Genovese WJ, Faloppa F. Effect of low-
intensity laser irradiation on the process of bone repair.

irradiation stimulates bone nodule formation at early
354.

7. Orawa Y, Shimizu N, Mishima H, Kajita Y, Yamaguchi M,
Takiguchi H, Ishawa T, Akiba Y. Stimulatory effects of low-
power laser irradiation on bone formation in vivo. In:
Altschuler GB, Blankenau RJ, Wigdor HA, editors. Advanced

8. Birnbaum RS, Bowsher RR, Wren KM. Changes in IGF-I
and -II expression and secretion during the proliferation and
144:251–259.

9. Harris SE, Sabatini M, Harris MA, Peng QJ, Wozney J,
Mundy GR. Expression of bone morphogenetic protein
message RNA in prolonged cultures of fetal rat calvarial

10. Nair SP, Meghji S, Henderson B. Osteoblast-like cells
respond to mechanical stress by secretion of osteolytic and
osteoclast-like differentiation factors. Calcif Tissue Int 1995;
52:593.

Insulin-like growth factor-I increases trabecular bone forma-
tion and osteoblastic cell proliferation in unloaded rats.

12. Spencer EM, Liu CC, Si ECC, Howard GA. In vivo action of
insulin-like growth factor-I (IGF-I) on bone formation and

Rosen CJ, Kream BE. Tranagenic mice with osteoblast-
targeted insulin-like growth factor-I show increased bone

14. Hock JM, Centrella M, Canalis E. Insulin-like growth factor
has independent effects on bone matrix formation and cell

15. McCarthy TL, Centrella M, Canalis E. Regulatory effects of
insulin-like growth factors I and II on bone collagen
synthesis in rat calvarial cultures. Endocrinology 1988;124:
301–309.

16. Fleischhauer J, Oechsner M, Naumann A, Gronwald RG,
Minne HW, Ziegler R. Stimulation of bone matrix apposition
in vitro by local growth factors: A comparison between
insulin-like growth factor I, platelet-derived growth factor,
and transforming growth factor b. Endocrinology 1989;127:
69–75.

17. Bellevue C, Aubin JE. Determination of numbers of osteo-
progenitors present in isolated fetal rat calvarial cells in vitro.

18. Bellevue C, Aubin JE, Hoersche JNM, Antonis ME. Min-
alized bone nodules formed in vitro from enzymatically
reduced rat calvarial cell populations. Calcif Tissue Int 1988;
38:143–154.

responses of different populations of bone cells to mechanical

isolation by acid guanidinium thiocyanate-phenol-chloroform

21. Roberts CT, Jr., Lasky GR, Lowe WL, Jr., Seaman WT,
LoLoth D. Molecular cloning of rat insulin-like growth factor I
complementary deoxyribonucleic acid: Differential mes-
enger ribonucleic acid processing and regulation by growth
hormone in extraocular tissues. Mol Endocrinol 1987;1:
245–248.

22. Tokunaga K, Nakamura Y, Sakata K, Fujimori K, Okubo M,
Sawada K, Sukiya S. Enhanced expression of a glycero-

23. Barushka O, Yahkoli T, Oran YU. Effect of low-energy laser
(He-Ne) irradiation on the process of bone repair in the rat

24. Yahkoli T, Maltz I, Oran MU. Promotion of bone repair in
the cortical bone of the tibia in rats by low-energy laser

25. Saito K, Shimizu N. Stimulatory effects of low-power laser
irradiation on bone regeneration in mid-patellar surgery
532.

wound healing of gingiva and bone. In: Galletti G, Bologna
L, Ussia G, editors. Laser applications in medicine and

27. Marka SC, Popoff SN. Bone cell biology: The regulation of
development, structure and function in the skeleton. Am J
Anat 1988;183:1–44.

28. Flanagan AM, Chambers TJ. Stimulation of bone nodule
formation in vitro by prostaglandin E2 and E3. Endocrinology

Ishida H. Effect of prostaglandin E2 on mineralization of bone
nodule formed by fet al rat calvarial cells. Calcf Tissue Int

30. Rechner MM, Nissley SP. Insulin-like growth factors. In:
Sporn MB, Roberts AB, editors. Peptide growth factors and

31. Canalis E. Effect of growth factors on bone cell replication

32. Canalis E. Effect of insulin like growth factor I on DNA and

