

Speedyws 8ビット、60MHzサンプリング A/Dコンバータ

特長

● 高SNR: 49.5dB

● 内部/外部リファレンス・オプション

● シングルエンドまたは差動アナログ入力

● プログラマブル入力レンジ: 1Vp-p/2Vp-p

● 低消費電力: 170mW

● 低DNL: 0.2LSB

● +5\/ 単一電源動作

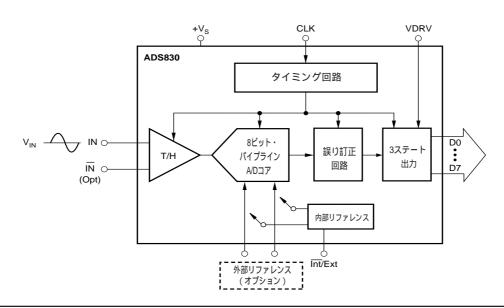
● パッケージ: 20ピンSSOP

アプリケーション

● 医療用画像処理

● ビデオ・デジタイジング

● 诵信


● ディスク・ドライブ制御

概要

ADS830は、+5V単一電源で動作するパイプライン方式の CMOS A/Dコンパータです。シングルエンド入力で優れた性能を発揮し、スプリアス性能を強化するために差動入力で動作させることも可能です。この高性能コンパータは、8ビット量子化回路、高帯域トラック/ホールド、および高精度内部リファレンスを備えています。また、内部リファレンスをディスエーブルとして外部リファレンスを使用することもできます。この外部リファレンス・オプションを使用すると、マルチチャンネル・アプリケーションやDCフルスケール・レンジ調整が必要なアプリケーションにおいて、優れたゲインおよびオフセット・マッチングが得られます。

ADS830はデータ誤り訂正技術を採用し、厳しい条件が要求される画像処理アプリケーションに対して優れた微分直線性を実現します。低歪で高SNRのため、医療用画像処理、通信、ビデオ、およびテスト装置に要求される十分な余裕が得られます。

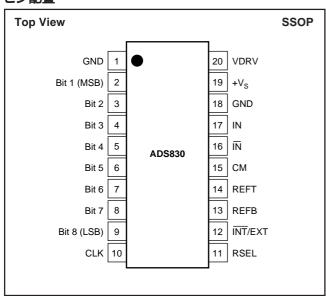
ADS830は、最大サンプリング周波数60MHz、シングルエンド 入力レンジ1.5Vから3.5Vで仕様が規定されています。パッケー ジは20ピンSSOPで供給され、8ピット、80MHzのADS831とピン・コンパチブルです。

PDSJ-1429B June,1998

仕様

特に記述のない限り、 $T_A = 全仕様温度範囲、シングルエンド入力レンジ = 1.5V ~ 3.5V、サンプリング・レート = 60MHz、外部リファレンスです。$

			ADS830E		
パラメータ	条件	最小	標準	最大	単位
			8 保証		Bits
	周囲気温		-40 ~ +85		
アナログ入力					
標準シングルエンド入力レンジ	2Vp-p	1.5		3.5	V
オプション・シングルエンド入力レンジ 同相モード電圧	1Vp-p	2	2.5	3	V V
同相モード電圧 オプション差動入力レンジ	2Vp-p	2	2.5	3	l v
アナログ入力バイアス電流			1		μА
入力インピーダンス	24050		1.25 5		MΩ II pF
トラック・モード入力帯域幅 変 換特性	-3dBFS		300		MHz
を探付性 サンプリング・レート		10k		60M	Samples/
データ待ち時間			4		Clk Cyc
ダイナミック特性					
微分直線性誤 <i>差</i> (最大コード誤差) f = 1MHz			±0.1	±1.0	LSB
f = 10MHz			±0.1 ±0.2	±1.0	LSB
ノー・ミッシング・コード			保証		
積分非直線性誤差、f = 1MHz			±0.3	±1.5	LSBs
スプリアスフリー・ダイナミック・レンジ ⁽¹⁾ 			67		dBFS ⁽²⁾
f = 10MHz(-1dB入力)		54	65		dBFS
ツー・トーン相互変調歪(3)					
f = 9.5MHzおよび9.9MHz(各トーンで-7dB)	フリフケ リケ甘油		-60		dBc
信号対雑音比(SNR) 	フルスケールを基準		49.5		dB
f = 10MHz		47	49.5		dB
信号対(雑音+歪)(SINAD)	フルスケールを基準				
f = 1MHz f = 10MHz		45	48 48		dB dB
1 = 100m12 有効ビット数 ⁽⁴⁾ 、f = 1MHz		45	7.7		Bits
微分ゲイン誤差	NTSC、PAL		0.2		%
微分位相誤差	NTSC、PAL		0.2		degrees
出力雑音 アパーチャ遅延時間	入力は同相モードに接続		0.2		LSBs rms
アパーチャ・ジッタ			1.2		ps rms
過電圧復帰時間			2		ns
フルスケール・ステップ・アクイジション時間			2.5		ns
デジタル入力			0 / === = > . 118	 	
ロジック・ファミリ 変換コマンド			S / TTL コンパ ロックの立ち上		
& ix コ	交通共和	交换力	1	100	μΑ
ロー・レベル入力電流(V _{IN} = 0V)				10	μA
ハイ・レベル入力電圧		+2.4		4.0	V
ロー・レベル入力電圧 入力キャパシタンス			5	+1.0	V pF
デジタル出力					F.
ロジック・ファミリ		СМО	S / TTL コンパ	チブル	
ロジック・コーディング	LAND THE STATE OF	ストレ	ート・オフセッ		l ,
出力電圧" ロー (I _{oL} = 50μA) 出力電圧" ロー (I _{oL} = 1.6mA)	VDRV = 5V			+0.1 +0.2	V V
出力電圧 ロー(loL = 1.50mA) 出力電圧" ハイ (loH = 50μA)		+4.9		+0.2	ľ
出力電圧" ハイ (I _{OH} = 0.5mA)		+4.8			V
出力電圧"ロー (I _{oL} = 50μA)	VDRV = 3V			+0.1	V
出力電圧" ハイ (Ι _{οн} = 50μA) 出力キャパシタンス		+2.8	5		V pF
☆~~~~~~ 精度(特に記述のない限り、内部リファレンス、2∨			-		F .
情度(特に記述のない限り、内部リファレンス、2▽ ゼロ誤差(-FSを基準)	р-р) 25	-2.5	±0.25	+2.5	%FS
ゼロ誤差ドリフト(-FSを基準)			±53		ppm/
ゲイン誤差 ⁽⁶⁾	25	-2.5	±0.3	+2.5	%FS
ゲイン誤差ドリフト ⁽⁶⁾ ゲインの電源除去	$\Delta V_s = \pm 5\%$		±75 58		ppm/ dB
カ部REFT許容差			±10	±100	mV
为部REFB許容差	理想値2.0Vからの偏差		±10	±100	mV
d 如DECT声C祭用	1	REFB+0.8	3.0	V _s -1.25	l v
外部REFT電圧範囲 外部REFB電圧範囲		1.25	2.0	REFT-0.8	l v


仕樣

特に記述のない限り、T_o = 全仕様温度範囲、シングルエンド入力レンジ = 1.5V~3.5V、サンプリング・レート = 60MHz、外部リファレンスです。

			ADS830E		
パラメータ	条件	最小	標準	最大	単位
電源条件 電源電圧:+V _s 電源電流:+I _s 消費電力:VDRV = 5V VDRV = 3V VDRV = 5V VDRV = 3V 熱抵抗、	動作時 動作時 外部リファレンス 外部リファレンス 内部リファレンス 内部リファレンス	+4.75	+5.0 37 185 170 215 200	+5.25 45 225	V mA mW mW mW
20ピンSSOP			115		/W

注:(1)スプリアスフリー・ダイナミック・レンジとは、最大高調波の振幅を示します。(2)はBFSはフルスケールを基準としたdBを意味します。(3)ツー・トーン相互変調歪は最大基本トーンを基準とします。ツー・トーン基本エンベローブの振幅を基準とした場合は、6dB高い値になります。(4)有効ビット数(ENOB)は(SINAD-1.76)6.02で定義されます。(5)50kΩのプルダウン抵抗が内部に挿入されています。(6)内部リファレンスを含みません。

ピン配置

ピン構成

ピン	名称	説明
1	GND	グランド
2	ビット1	データ・ビット1(D7)(MSB)
3	ビット2	データ・ビット2(D6)
4	ビット3	データ・ビット3(D5)
5	ビット4	データ・ビット4(D4)
6	ビット5	データ・ビット5(D3)
7	ビット6	データ・ビット6(D2)
8	ビット7	データ・ビット7(D1)
9	ビット8	データ・ビット& D0 (LSB)
10	CLK	変換クロック
11	RSEL	入力レンジ選択 : " ハイ "= 2V、" ロー "= 1V
12	INT/EXT	リファレンス選択 : " ハイ "= 外部、" ロー "= 内部
13	REFB	低電位基準電圧
14	REFT	高電位基準電圧
15	CM	同相モード電圧出力
16	IN	反転入力
17	IN	アナログ入力
18	GND	グランド
19	+V _s	+5V電源
20	VDRV	出力ロジック・ドライバ電源電圧

パッケージ情報/ご発注の手引き

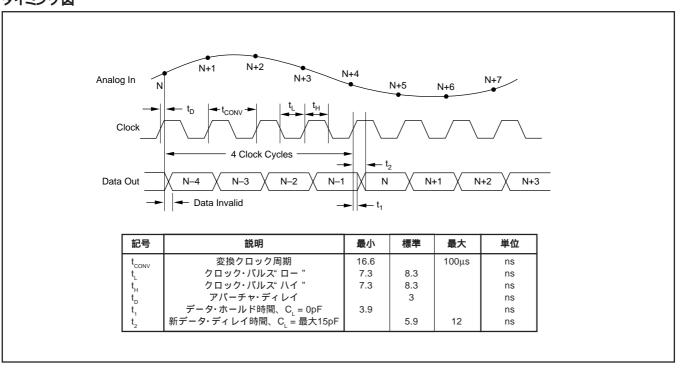
モデル	パッケージ	パッケージ 図番号 ⁽¹⁾	仕樣温度範囲	パッケージ・ マーキング	発注番号 (2)	供給時の状態
ADS830E	20ピンSSOP(QSOP)	349	-40 ~ +85	ADS830E	ADS830E	マガジン
ADS830E	20ピンSSOP(QSOP)	349	-40 ~ +85	ADS830E	ADS830E/2K5	テープリール

注:(1)詳細図および寸法表は、データシートの巻末を参照してください。(2)スラッシュ(/)の付いたモデルは、その後に示される数量を単位として、テーブリールでのみ供給されます(たとえば、/2K5は2,500個で1リールであることを示します)。「ADS830E/2K5」をご発注の場合、ADS830E2,500個入りのテープリールが1本納入されます。

絶対最大定格

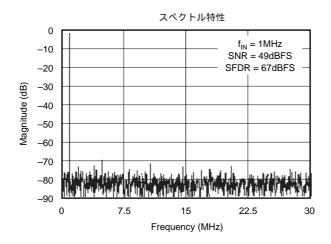
+V ₀	+6V
┃ アナログ入力	
ロジック入力	-0.3V ~ (+V +0.3V)
ケース温度	+100
	+150
┃ ほ仔温度	+150

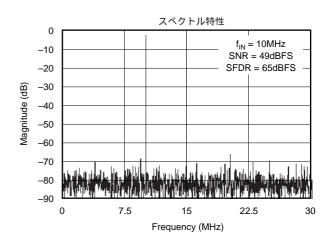
デモボードご発注の手引き

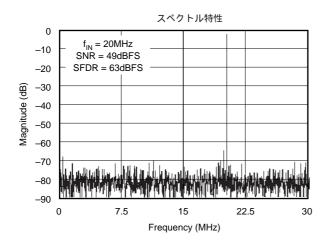

モデル	デモボード
ADS830	DEM-ADS830E

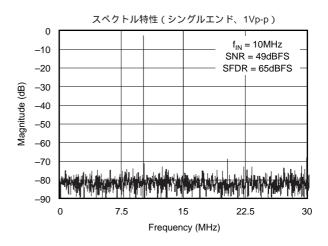
静電気放電対策

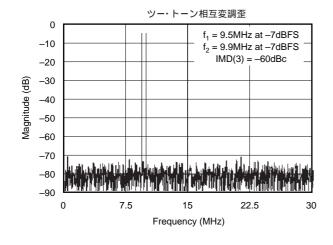
静電気放電はわずかな性能の低下から完全なデバイスの故障に 至るまで、様々な損傷を与えます。すべての集積回路は、適切 なESD保護方法を用いて、取扱いと保存を行うようにして下さ い。高精度の集積回路は、損傷に対して敏感であり、極めてわ ずかなパラメータの変化により、デバイスに規定された仕様に 適合しなくなる場合があります。

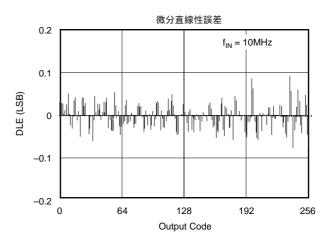

タイミング図

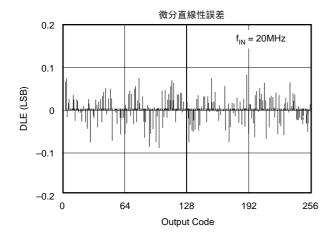


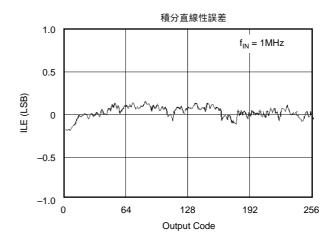

このデータシートに記載されている情報は、信頼し得るものと考えておりますが、不正確な情報や記載漏れ等に関して弊社は責任を負うものではありません。情報の使用について弊社は責任を負えませんので、各ユーザーの責任において御使用下さい。価格や仕様は予告なしに変更される場合がありますのでご了承下さい。ここに記載されているいかなる回路についても工業所有権その他の権利またはその実施権を付与したり承諾したりするものではありません。弊社は弊社製品を生命維持に関する機器またはシステムに使用することを承認しまたは保証するものではありません。

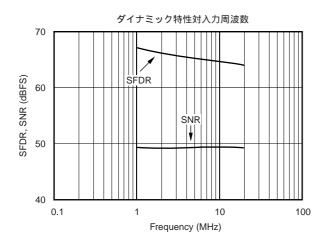

代表的性能曲線

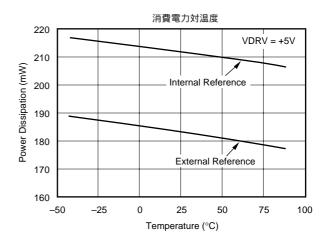

特に記述のない限り、 T_{a} = 全仕様温度範囲、シングルエンド入力レンジ = 1.5V ~ 3.5V、サンプリング・レート = 60MHz、外部リファレンスです。










代表的性能曲線


特に記述のない限り、 T_{a} = 全仕様温度範囲、シングルエンド入力レンジ = 1.5V ~ 3.5V、サンプリング・レート = 60MHz、外部リファレンスです。

使用上の注意

動作原理

ADS830は、内部6段構成のパイプライン・コンパータ・アーキテクチャを採用した高速CMOS A/Dコンパータです。各段でデータをデータ誤り訂正回路に入力することにより、8ピット・レベルで優れた微分直線性とノー・ミッシング・コードを実現します。出力データはクロックの立ち上がりエッジで有効になります(タイミング図を参照)。パイプライン方式によって、データ待ち時間は4クロック・サイクルとなります。

ADS830のアナログ入力は差動トラック/ホールドです(図1を参照)。キャパシタを厳密にマッチングした差動トポロジにより、きわめて高いサンプリング・レートで高レベルのAC性能が得られます。

ADS830では、アナログ入力をシングルエンドまたは差動のいずれかの方法でドライブできます。シングルエンド・モードが標準的な構成で、このモードでは入力トラック/ホールドによってアナログ入力信号がシングルエンドから差動に変換されます。

両方の入力(IN、+N)に対して、同相モード電圧を使用した外部パイアスが必要です。通常は、中心電源レベル(+V $_{S}$ / 2)の電圧を供給します。

以降の項目では、シングルエンド構成を中心に説明しています。一般に、シングルエンド構成の方が容易であり、ADS830の 定格仕様はシングルエンド・モードの動作で規定されています。

アナログ入力のドライブ

ADS830は、シングルエンド・モードと差動モードのいずれにおいても優れたAC性能を発揮します。個々のアプリケーション要件とシステム構造に基づいて最適なインターフェース構成を選択して下さい。たとえば、通信アプリケーションではDCを含まない周波数帯域を処理する場合が多く、一方、画像処理アプリケーションでは事前に復元したDCレベルをA/Dコンバータまで正確に維持する必要があります。ADS830は、入力レンジ選択(RSELピン)や外部リファレンス・オプションなどの機能によっ

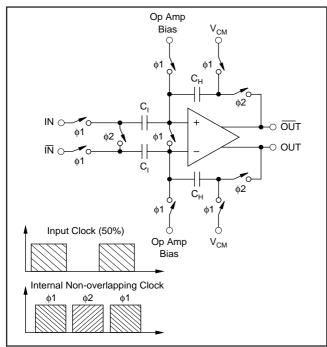


図1.入力トラック/ホールド回路の概略およびタイミング図

て、幅広い範囲のアプリケーションに対応できる柔軟性を持っています。いずれの場合も、アプリケーションの目的に適した 構成を選択しながら、ドライブ・アンプのヘッドルーム条件に 従って全体的に最高の性能を達成することが必要です。

入力構成

AC**結合単一電源インターフェース**

ADS830をAC結合アナログ入力構成で使用する場合の標準的な 回路を図2に示します。すべてのコンポーネントの電源が単一の +5V電源から供給されます。

RSELピンを"八イ"に接続することにより、フルスケール入力レンジは2Vp-pに設定されます。この構成では、高電位基準電圧と低電位基準電圧(REFT、REFB)はそれぞれ+3.0Vと+2.0Vの出力電圧を供給します。2個の抵抗(2×1 k Ω)によって約2.5Vの同相モード電圧(V_{CM})が作られ、ドライブ・アンプの入力をバイアスします。+5V単一電源でOPA681を使用することにより、その理想的な同相モード点は+2.5Vとなり、ADS830の推奨同相モード入力レベルである+2.5Vと一致します。これによって、アンプとコンバータの間にカップリング・コンデンサを挿入する必要がなくなります。OPA681のACゲインは+2ですが、抵抗R $_{G}$ に接続されたプロッキング・コンデンサによって、DCゲインは+1にしかなりません。

オペアンプの出力とADS830の入力の間に小さい直列抵抗(R_s)を追加することは、ほとんどすべてのインターフェース構成で有益です。これによってオペアンプの出力が容量性負荷から分離され、雑音が増加する原因となるゲインのピークを防ぎます。スプリアスおよび歪に関して最高の性能を得るため、抵抗値は75 以下にして下さい。この直列抵抗に47pFのコンデンサを組み合わせると、広帯域雑音の帯域幅を制限するパッシブ・ローパスフィルタが構成され、SNR性能の向上に役立ちます。

AC結合デュアル電源インターフェース

図3の回路に、デュアル電源で動作するアンプを選択した場合の標準的なアナログ入力接続を示します。この構成が必要となるのは、OPA642のような歪がきわめて低いオペアンプを最大限に利用する場合などです。この構成の利点は、ドライブ・アンプがグランド基準のバイポーラ信号スイングで動作できることです。これにより、信号レンジがオペアンプのリニアな動作範囲に収まり、電源レールに対して十分なヘッドルームが維持できるため、歪が最低に保たれます。ADS830に対してシングルエンド信号を容量性カップリングで入力することにより、高電位基準電圧と低電位基準電圧の間に接続された2つの抵抗を使って同相モード条件を簡単に満足することができます。

ドライブ・アンプがゲイン5以上で信号増幅を行う必要のある アプリケーションに対しては、OPA643などの非補償電圧帰還型 オペアンプまたはOPA681、OPA658などの電流帰還型オペアン プの使用を考えて下さい。

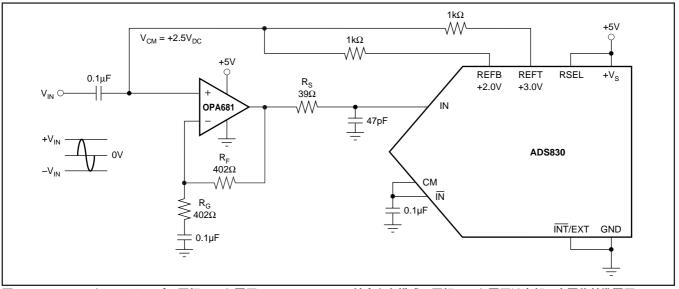


図2.2Vp-pフルスケール・レンジ、同相モード電圧V_{CM} = +2.5VでのAC結合入力構成。同相モード電圧は内部の高電位基準電圧(REFT) と低電位基準電圧(REFB)を使って生成されます。電圧帰還型アンプを使用したい場合は、OPA681の代わりにOPA680を使用できます。

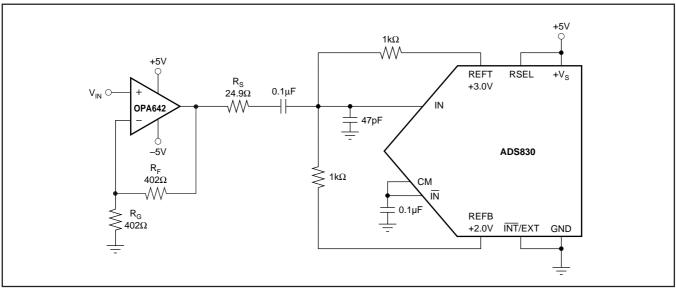


図3.2Vp-pフルスケール入力レンジでのADS830に対するデュアル電源アンプOPA642のAC結合

レベル・シフト付きDC結合

アプリケーションによっては、信号路の帯域幅にDCが含まれ る必要があります。そのような場合、信号はA/Dコンパータに DC結合しなければなりません。そのためには、アナログ入力信 号に対してインターフェース回路でDCレベル・シフトをかける 必要があります。図4に示す回路では、デュアル・オペアンプA1 により、ADS830の入力をドライブする一方で、選択した入力レ ンジに合わせて信号をレベル・シフトします。 RSEL ピンを電源 に接続してINT/EXTピンをグランドに接続することにより、 ADS830は2Vp-p入力レンジに設定され、内部リファレンスが使 用されます。反転入力(IN)は、CM ピンの+2.5V同相モード電圧 を使って適切にバイアスすることができます。アンプ(OPA2681) の半分はREFBピンをバッファリングして分圧回路R、、R。をドライ プします。 $R_F = R_{IN}$ と仮定するとオペアンプの雑音ゲインは+2V/ ∨であるため、同相モード電圧(V_{CM})は+1.25Vにスケーリングし 直す必要があり、その結果、信号入力(IN)に対して正しNDCレ ベル+2.5Vが得られます。ADS830のINとIN入力間の任意のDC電

圧差で有効にオフセットが生成され、分圧回路R₁、R₂の抵抗値をそれに合わせて調整できます。適切なオペアンプの選択基準としては、電源電圧、入力パイアス電流、出力電圧スイング、歪、雑音などの仕様を考慮します。この例では、信号の位相全体が反転していることに注意して下さい。信号の極性を元に戻す場合は、INとINの接続をいつでも相互に交換できます。

シングルエンド/差動構成 (トランス結合)

シングルエンド・ソースからADS830に差動で信号を入力する場合には信号変換が必要ですが、そのようなアプリケーションに対してはRFトランスを使うのが有効と思われます。コンパータ入力のパイアスに必要な同相モードDC電圧を印加するために、センター・タップのあるトランスを選択します。センター・タップをAC接地することにより、2次巻線に差動信号スイングが発生します。昇圧トランスを使用すれば、新たな雑音源を導入せずに信号を増幅することができます。さらに、ソースからの

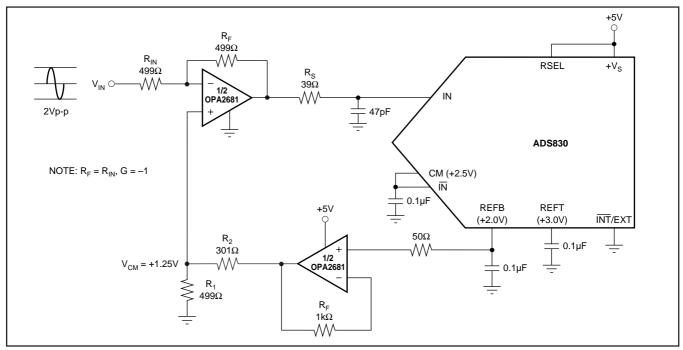


図4.デュアル電流帰還型アンプOPA2681を使ったDC結合インターフェース回路。電圧帰還型アンプを使用したい場合は、OPA2681の代わりにOPA2680を使用できます。

信号スイングが減少することにより、歪性能が向上する可能性 もあります。

差動入力構成の顕著な利点として、幅広い範囲の入力周波数で良好なSFDR性能を達成できる可能性があります。このモードでは、ADS830の2つの入力から見たインピーダンスは厳密にマッチングされていて、差動信号スイングはシングルエンド・ドライブに必要なスイングの半分に減少します。推奨されるトランス結合インターフェース回路の回路図を図5に示します。RCローパスフィルタの各部品の値は、使用するロールオフ周波数に応じて最適化できます。2次側の抵抗(R_{τ})の値は式 R_{τ} = $n^2 \times R_c$ を使って計算すれば、ソース・インピーダンス(R_c)とマッチして良好な電力転送とVSWRが得られます。

図5.トランス結合入力

リファレンス動作

図6に内部リファレンス回路を単純化したモデルを示します。 内部プロックは、パンドギャップ電圧リファレンス、高電位基 準電圧用と低電位基準電圧用のドライバ、および抵抗性リファ レンス・ラダーです。パンドギャップ・リファレンス回路に含ま れるロジック機能により、RSELピンを"ロー"または"ハイ"電位に 接続するだけでADS830のアナログ入力スイングをそれぞれ1Vp-p または2Vp-pフルスケール・レンジに設定することができます。 ADS830が外部リファレンス・モードで動作している間、REFTとREFB のパッファ・アンプはリファレンス・ラダーから切り離されます。

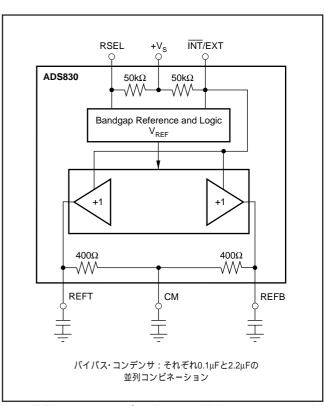


図6.推奨リファレンスパイパスによる等価リファレンス回路

図に示すように、ADS830のレンジ選択ピン(RSEL)とリファレンス選択ピン(INT/EXT)には50kΩの内部プルアップ抵抗が接続されています。これらのピンをオープンのままにすると、ADS830は2Vp-p入力レンジおよび外部リファレンス動作に設定されます。ADS830を内部リファレンスモードに設定するには、INT/EXTピンを"ロー"にします。

リファレンスパッファを使って、1mAまでの電流(シンクおよびソース)を外部回路に供給できます。どんなリファレンス構成でも適切に動作するように、リファレンスピンにソリッドパイパスを付けてクロックフィードスルーを最小に保つ必要があります(図6)。バイパスコンデンサはすべて、それぞれの対応するピンにできる限り近く配置して下さい。

CMピンで得られる同相モード電圧は、ドライブ回路に適切なオフセットを与えるためのバイアス電圧として使用できます。ただし、このノードは高いインピーダンスを持ち、バッファリングもされていないため、負荷を与えすぎないように注意して下さい。同相モード電圧を生成するための別の方法を図7に示します。ここでは、高電位基準電圧ピンと低電位基準電圧ピンの間に2個の高精度外部抵抗(許容差1%以内)が接続されています。同相モード電圧CMVは中心に現れます。

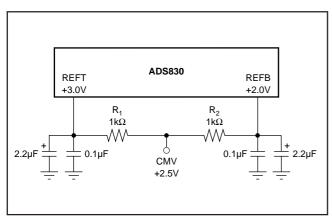


図7.同相モード電圧を生成する別の回路

外部リファレンス動作

設計の柔軟性をさらに高めるために、内部リファレンスを使用せずに外部リファレンス電圧を使用することができます。より高い精度や温度性能の向上を求めるアプリケーション、またはコンパータのフルスケール・レンジの調整範囲を広くしたいアプリケーションなどに対しては、外部リファレンスの使用を考慮できます。特にマルチチャンネル・アプリケーションでは、共通の外部リファレンスを使用することで、コンバータ間のフルスケール・レンジのマッチングが向上するという利点が得られます。

外部リファレンスの値は自由に設定できますが、外部高電位基準電圧REFT_{EXT}の値は(V_s -1.25V)と(REFB+0.8V)の間、外部低電位基準電圧REFB_{EXT}は1.25Vと(REFT-0.8V)の間でなければなりません(図8を参照)。

ADS830のフルスケール入力信号レンジ(FSR)は、リファレンス・ピンREFTとREFBの電圧の差によって決まります(FSR = REFT-REFB)。また、同相モード電圧はCMV = (REFT+REFB)/2で定義されます。良好なAC性能を維持するために、外部リファレンス電圧の設定時に標準的な同相モード電圧を+2.5Vに保つことをお勧めします。ただし、性能に大きな影響を与えずにこの同相モード・レベルから離れた値に設定することも可能です。特にDC結合アプリケーションでは、CMVを低くした方がドライブ・アンプの信号ヘッドルームが増加して有益な場合があります。内部リファレンス・ラダーの公称インピーダンスは800Ωです。選択した基準電圧によって、必要なドライブ電流は変化します。必要な最大電流を供給できるように外部リファレンス回路を設計して下さい。

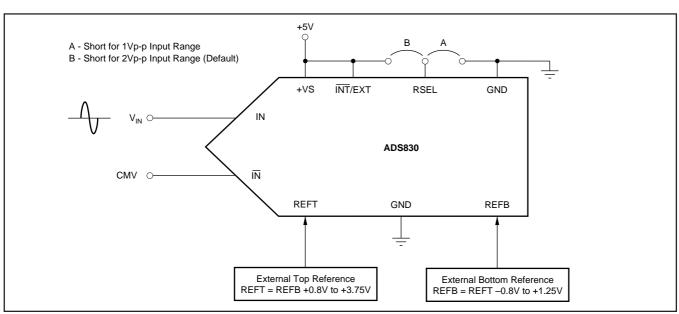


図8.外部リファレンス動作の構成例

デジタル入力およびデジタル出力クロック入力条件

クロック・ジッタは高速、高分解能A/DコンパータのSNR性能にとって重要です。クロック・ジッタは変換中の信号を起こすアパーチャ・ジッタ(t_A)の原因となります。ADS830はCLK入力の立ち上がりエッジで入力信号をサンプリングします。そのため、このエッジのジッタはできる限り低くなければなりません。総SNRへのジッタ雑音の影響は下の式で求められます。式から導いた値がシステムの要求値に近い場合はクロック・ジッタを下げなければなりません。

ジッタ SNR =
$$20 \log \frac{1}{2\pi f_{IN} t_A}$$
 rms信号からrms雑音 (1)

ここで、 f_{IN} は入力信号周波数 t_{A} はrmsクロック・ジッタ

特にアンダーサンプリング・アプリケーションでは、クロック・ジッタに特別の注意を払って下さい。最高レベルの性能を達成するためには、クロック入力をアナログ入力として扱う必要があります。クロック信号にオーバーシュートやアンダーシュートがあると性能が劣化します。高いサンプリング・レートでデジタル化する場合、クロックには50%のデューティ・サイクル($t_H = t_L$)と高速な立ち上がり時間および立ち下がり時間(2ns以下)が必要になります。

デジタル出力

ADS830の出力データ・フォーマットは正のストレート・オフセット・バイナリ・コードです(表Iを参照)。このフォーマットは、MSBを反転することで簡単にバイナリ2の補数コードに変換できます。

シングルエンド入力(2Vp-p)	ストレートオフセットパイナリ
(IN = CMV)	(SOB)
+FS(IN = +3.5V)	1111 1111
+1/2FS	1100 0000
+1LSB	1000 0001
パイポーラゼロ(IN = 2.5V)	1000 0000
-1LSB	0111 1111
-1/2FS	0100 0000
-FS(IN = +1.5V)	0000 0000

表 . ADS830のコード表

データ・ラインの容量性負荷はできるだけ低くすることをお勧めします(15pF以下)。容量性負荷が高いと、デジタル出力が変化するときのダイナミック電流が大きくなります。そのような高い電流サージはADS830のアナログ部分に帰還して性能に影響する可能性があります。必要ならば、コンパータの出力ピンの近くに外部パッファまたはラッチを設けて容量性負荷を低減することができます。これにより、高周波雑音をカップリングして戻すようなパス上のデジタル雑音動作からADS830を分離する効果も得られます。

デジタル出力ドライバ VDRV)

ADS830は、出力ロジック・ドライバVDRVのための専用電源ピンを備えています。VDRVは内部で他の電源ピンとは接続されていません。VDRVの電圧を+5Vまたは+3Vに設定すると、ADS830は対応するロジック・レベルを生成し、選択されたロジック・ファミリに直接インターフェースすることができます。出力段は各種のロジック・ファミリをドライブするのに十分な電流を供給するように設計されていますが、ADS830を+3Vロジック電源で使用することをお勧めします。これにより出力スイングが小さくなって出力段での消費電力が減少し、コンパータのAC性能に影響する可能性のある電源ライン上の電流グリッチも減少します。アプリケーションによっては、追加のコンデンサまたは"Pi"フィルタを使ってVDRVピンをデカップリングするのも有益でしょう。

グランディングおよびデカップリング

適切なグランディングとバイパス、リード長の短縮、およびグ ランド・プレーンの使用は、高周波設計にとって特に重要です。 最高の性能を達成するためには、多層プリント基板の使用をお 勧めします。なぜなら、グランド・インピーダンスの低減やグラ ンド層による信号層の分離など、明確な利点があるからです。 ADS830はアナログ部品として取り扱う必要があります。可能な 限り、電源ピンにはアナログ電源から供給して下さい。安定し た結果が得られるようになります。これは、デジタル電源ライ ンには高レベルの雑音が含まれている場合が多く、これはコン バータにカップリングされて達成可能な性能を低下させるから です。ADS830のグランド接続はすべて内部で結合されているた め、分割したグランド・プレーンの設計は不要になります。グラ ンド・ピン(1、18)は、コンバータ周辺のプリント基板領域を覆う アナログ・グランド・プレーンに直接接続して下さい。レイアウ トの設計の際には、アナログ信号パターンをすべてのデジタル・ ラインから分離して、アナログ信号路への雑音カップリングを 防ぐことが重要です。サンプリング・レートが高いため、 ADS830は高周波の過渡電流や雑音(クロック・フィードスルー)を 発生し、これらは電源ラインおよびリファレンス・ラインに帰還 します。そのため、すべての電源ピンとリファレンス・ピンを十 分にバイパスする必要があります。ADS830の推奨デカップリン グ方法を図9に示します。ほとんどの場合、広い周波数範囲にわ たってインピーダンスを低く保つには、各ピンに0.1μFのセラ ミック・チップ・コンデンサを接続するのが適切です。その有効 性は各電源ピンからの距離によって大きく変化するため、でき る限り電源ピンに近い位置に配置するようにしてください。ま た、それより大きな値のバイポーラ・コンデンサ(1μFから22μF) をプリント基板上でコンバータ回路に近い位置に配置して下さい。

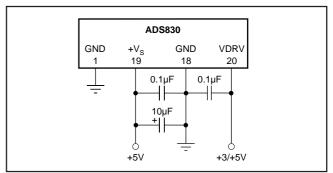
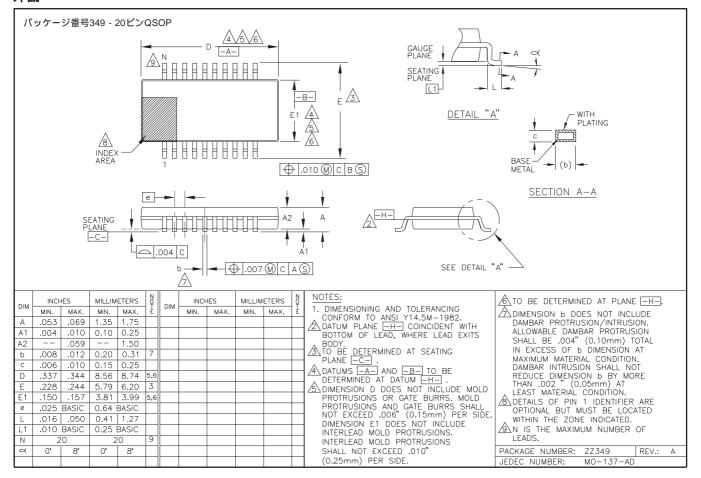



図9.電源ピンの推奨バイパス方法

外観

